If a square and a circle have the same perimeter. Which one will have the bigger area?
Mathematics
- 7258 Views
- 36 Answers
36 Answers
-
-
- 12 Jul
- 0 Comment
-
-
If the perimeter is fixed the circle will have the maximum area possible compared to any other shape including that of square.br /We can check that as follows.br /Let P be perimeter then, br /P = 2*π*radius {For Circle} = 4*side {For Square)br /thereforebr /Circle Area = π*radius^(2) = π*(P/(2π))^(2) = P^2/(4π) = 0.07958*P^(2)br /Square Area = side^(2) = (P/4)^(2) = P/16 = 0.0625*P^(2)br /hencebr /Circle Area > Square Area
-
- 06 Jul
- 0 Comment
-
-
Circle Let's say that the the perimeter is p. For a square, the side would be, (p/4) and the area would be (p^2/16). For the circle, the radius would be (p/2p) and area would be (p^2/4p). 4p is approx 12.56. Thus, circle had bigger area
-
- 12 Dec
- 2 Comment
-
- during which year of my bachelor degree should I appear for GRE??
- Can I give only GRE and go for both MS and MBA?
- What is considered a good score on the GRE? What GRE score do I need for Harvard?
- Full form of GRE ,
- GRE exam pattern
- I have done huge mistake while writing gre can anyone help me please
- My engineering percentage is 63....and my gre score is 321 and toefl is 104.....will i get a good university in USA for MS Computational science and engineering
- GRE - PREVIOUS YEAR PAPERS, LAST YEAR PAPER?
- GRE - Best Mobile app to prepare, Mock tests?
- How many times can I take the GRE? What is the best way to study for the GRE?
Practice Mock Test
gre
if the perimeter is fixed the circle will have the maximum area possible compared to any other shape including that of square.br /We can check that as follows.br /Let P be perimeter then, br /P = 2*π*radius {For Circle} = 4*side {For Square)br /thereforebr /Circle Area = π*radius^(2) = π*(P/(2π))^(2) = P^2/(4π) = 0.07958*P^(2)br /Square Area = side^(2) = (P/4)^(2) = P/16 = 0.0625*P^(2)br /hencebr /Circle Area > Square Areabr /Let’s now find the area of circle (Ac)Ac) w.r.t its circumference/ perimeter (PP), where rr is the radius of the circlebr /P=2πrP=2πrbr /Therefore, r=P2πr=P2πbr /Ac=πr2Ac=πr2br /Ac=π(P2π)2Ac=π(P2π)2br /Ac=P24π(1)(1)Ac=P24πbr /Let’s now find the area of square (As)As) w.r.t its perimeter (PP), where ll is the side of the squarebr /P=4lP=4lbr /l=P4l=P4br /As=l2As=l2br /As=P216(2)(2)As=P216br /Let’s now find the area of equilateral triangle(Ae)Ae) w.r.t its perimeter (PP), where ss is the side of the trianglebr /P=3sP=3sbr /s=P3s=P3br /Ae=3√4∗s2Ae=34∗s2br /br /Ae=3√4∗P29Ae=34∗P29br /Ae=P3√36Ae=P336br /Ae=P123√(3)(3)Ae=P123br /Comparing the denominators of equations 1, 2 and 3,br /4π<16<123–√4π<16<123br /As the above numbers are in the denominator,br /Ac>As>AeAc>As>Aebr /br /Thus, the circle contains he maximum area and the equilateral triangle contains the minimum area.